大家在讨论教案时,常常强调课程目标与教学策略的一致性,一份好的教案能够增强学生的社交能力和沟通技巧,下面是吾爱文书网小编为您分享的蛋的数学教案优秀5篇,感谢您的参阅。
蛋的数学教案篇1
一、教学目标:
根据学生已有的认知的基础及本课的教材的地位、作用,依据教学大纲的确定本课的教学目标为:
(1)知识目标:
a、知道直线和圆相交、相切、相离的定义。
b、根据定义来判断直线和圆的位置关系,
会根据直线和圆相切的定义画出已知圆的切线。
c、根据圆心到直线的距离与圆的半径之间的数量关系揭示直线和圆的位置。
2)能力目标:
让学生通过观察、看图、列表、分析、对比,能找出圆心到直线的距离和圆的半径之间的数量关系,揭示直线和圆的关系。此外,通过直线与圆的相对运动,培养学生运动变化的辨证唯物主义观点,通过对研究过程的反思,进一步强化对分类和归纳的思想的认识。
3)情感目标:
在解决问题中,教师创设情境导入新课,以观察素材入手,像一轮红日从海平面升起的图片,提出问题,让学生结合学过的知识,把它们抽象出几何图形,再表示出来。让学生感受到实际生活中,存在的直线和圆的三种位置关系,便于学生用运动的观点观察圆与直线的位置关系,有利于学生把实际的问题抽象成数学模型,也便于学生观察直线和圆的公共点的变化。
二.教材的重点难点
直线和圆的三种位置关系是重点,本课的难点是直线和圆的三种位置关系的性质与判定的.应用。
三.在教学中如何突破这个重点和难点
解决重点的方法主要是:(1)由学生观察老师展示的一轮红日从海平面升起的照片提出问题,能不能我们学过的知识把它们抽象出几何图形再展示出来(让学生尝试通过日出的情境画出几种情况),(2)把直线在圆的上下移动,引导学生用运动的观点观察直线和圆的位置关系,并让他们发现直线与圆的公共点的个数,揭示直线和圆相交、相切、相离的定义,归纳直线和圆的三种位置关系。是什么?)。
在说直线与圆的位置关系时,如何突破这个难点:(1)突破直线和圆不能有两个以上的公共点,让学生讨论,最后明确否定(因为直线和圆有三个或三个以上的公共点,那么这与不在同一条直线上的三点就可以作一个圆,相矛盾)。
(2)把直线在圆的上下移动,引导学生用运动的观点观察直线和圆的位置关系,并让他们发现直线与圆的公共点的个数,揭示直线和圆相交、相切、相离的定义,归纳直线和圆的三种位置关系。
(3)突破直线和圆有唯一一个公共点是直线和圆相切(指直线与圆有一个并且只有一个公共点,它与有一个公共点的含义不同)。
(4)突破直线和圆的位置关系的(如果圆o的半径为r,圆心到直线的距离为d,
1.直线l与圆 o相交 d3.直线l与圆 o相离 d>r式子的左边反映是两个图形(直线和圆)的位置关系的性质,右边是反映直线和圆的位置关系的判定。
四、教学程序
创设情境------导入新课------新授-------巩固练习-----学生质疑------学生小结------布置作业
[提问] 通过观察、演示,你知道直线和圆有几种位置关系?
[讨论] 一轮红日从海平面升起的照片
[新授] 给出相交、相切、相离的定义。
[类比] 复习点与圆的位置关系,讨论它们的数量关系。通过类比,从而得出直线与圆的位置关系的性质定理及判定方法。
[巩固练习] 例1,
出示例题
例1 在rt△abc中,∠c=90°,ac=3cm,bc= 4cm,以c为圆心,r为半径的圆与ab有什么样的位置关系?为什么?
(1)r=2cm; (2)r=2.4cm; (3)r=3cm
由学生填写下例表格。
直线和圆的位置关系
公共点个数
圆心到直线距离d与半径r关系
公共点名称
直线名称
图形
补充练习的答案由师生一起归纳填写
教学小结
直线与圆的位置关系,让学生自己归纳本节课学习的内容,培养学生用数学语言归纳问题的能力。然后老师在多媒体打出图表。
本节课主要采用了归纳、演绎、类比的思想方法,从现实生活中抽象出数学模型,体现了数学产生于生活的思想,并且将新旧知识进行了类比、转化,充分发挥了学生的主观能动性,体现了学生是学习的主体,真正成为学习的主人,转变了角色。
蛋的数学教案篇2
活动目标:
1、正确感知6以内数的组成。
2、通过游戏以及操作练习活动,复习6以内的组成和5以内的加减运算。
3、逐步提高运算的速度以及正确性。
活动准备:
教具:6以内的数卡以及5以内的加减算式。
学具:幼儿用书第一页,铅笔。
活动过程:
一、集体活动
1、复习6以内的组成。
6分成不同的两份有几种分法,是哪几种分法?
2、师生共同玩“碰数”游戏,巩固复习6以内的组成。
游戏2—3遍后,可更换数字“6”“4”,提醒幼儿口报的数字和老师包的数字合起来与卡片上的数字一样多。
3、复习5以内的加减。
4、游戏:开快乐火车。
鼓励幼儿快速报出算术卡片上的得数。
二、操作活动。
看分合式,填空格。
三、活动。
展示幼儿的操作材料,对整洁、正确的作业进行表扬和奖励。
活动刚开始,幼儿注意力有点分散,这也许是刚开学的原因吧,不过后来在玩“碰球”游戏时,幼儿的注意力马上集中了上来。
操作活动时,幼儿做的很认真,不过坐姿有点不好,有部分幼儿的头太低,另外有一个小朋友尽然趴在桌子上做作业,很多幼儿需要老师的'不断提醒才能改正过来。
活动反思:
活动中,我通过让幼儿玩一玩、算一算、找一找等方法练习了6以内的组成,并通过游戏等形式帮助幼儿加深了6以内的组成,以及复习、掌握了5以内的加减。另外在今天这个活动中,每个幼儿都表现的很认真,能积极参与活动,情绪愉快,连平时能力较弱的孩子,如蒋锦泺、沈嘉翮等幼儿也主动参与了活动。操作练习时,大多数孩子能独立地完成自己的作业,有部分数学基础较差的小朋友需要老师或同伴的帮助才能完成作业。同时,也出现个别孩子抄袭别人作业的现象,有待以后的引导。
蛋的数学教案篇3
教学内容分析:
?圆的周长》选自苏教版《义务课程标准实验教科书数学》五年级(下)第98~99页例4、例5内容。“圆的周长”概念教学是以长方形、正方形周长知识为认知基础,是前面学习“圆的认识”的深化,是后面学习“圆的面积”等知识的基础,因此它起着承前启后的作用,是小学几何初步知识教学中的一项重要内容。
学情分析:
经调查了解发现,有部分学生已经在课前通过各种信息渠道知道了圆的周长计算公式,但能正确理解圆周率的意义和特征的学生只占少数。可见学生知道圆的周长计算公式只是“知其然”,因此,本节课的教学重点是层层深入探索圆的周长与直径的关系,理解圆周率的意义,让学生真正“知其所以然”。
教学目标:
1.理解圆周长的含义,掌握求圆周长的计算方法,并能正确计算圆的周长。
2.经历操作、猜想、验证等学习活动,培养探究能力及合作意识,提升思维水平。
3.深刻理解圆周率的意义,通过介绍我国古代数学家在圆周率方面的伟大成就,感受数学文化,激发民族自豪感。
教学重难点:
重点:圆的周长与直径关系的探讨,理解圆周长的计算方法。
难点:理解圆周率的意义
教具准备:
实物投影议、电脑。
学具准备:
每四个学生一组:
1、圆形实物(荧光圈、杯盖、圆形胶带、飞镖盘等)
2、直尺一把
3、测量绳一条
4、研究表格
5、计算器
教学过程:
一、复习引入,明晰概念
1.出示正方形,指一指正方形的周长
2.出示圆,你知道什么是圆的周长吗?指一指。
3.课件演示圆的周长。
揭示概念:围成圆一周曲线的长就是圆的周长。
板书课题:圆的周长
?设计意图:由正方形的周长引入,便于学生对周长的概念进行迁移,同时正方形也是在探究圆的周长与直径关系时不可或缺的参照。】
二、直观感知,激发需求
1.激趣
师:2个图形,给你一把直尺,让你通过测量得到它们的周长,你愿意测量几号?
生感知圆的周长是曲线,不便用尺直接量。
师:老师就想为难你,用直尺量出圆的周长,敢挑战吗?
2.转化
(1)量荧光圈的周长
明确:可以把接头拔下来,拉直了量。
(2)量飞镖盘的周长。不能拉直,怎么办?
明确:可以用线绕一绕,在尺上滚一滚。
介绍测量过程的注意点,突出几种量法的共同点——化曲为直。
3.激??
出示摩天轮:这么大的摩天轮,用剪、滚、绕的方法合适吗?
明确:直接测量圆的周长,有时会遇到困难。我们得想想其它的方法了!
设计意图:
1、测量要求的提出,促使化曲为直的方法呼之欲出,也为操作环节做好准备。
2、圆的周长与其它图形周长的本质的区别之一就是,它有时无法通过直接测量边的长度得到周长,而这理应成为学生学习圆周长计算方法的直接需求。
三、实践操作,探究新知
(一)初步感知圆的周长与什么有关?
猜想:正方形的周长与边长有关,圆的周长可能与什么有关?
学生讨论后板书:直径、半径。
课件演示,观察验证:三个直径不同的车轮,各向前滚动一周,发现什么?
得出:直径越大,圆的周长就越大;直径越小,圆的周长就越小。
(二)判断推理圆的周长与直径有怎样的关系?
出示圆和它的直径。
猜想:圆的周长与直径之间可能有这样的关系?
生自由猜想:2倍、3倍、4倍(3.14、3.1415926……)
推理验证:
1.圆的周长可不可能正好是直径的2倍?
2.圆的周长可不可能正好是直径的4倍?(圆出于方)
3.圆的周长可能是直径的几倍?(3倍左右)
明确:圆的周长应该比直径的2倍多,4倍少,大约3倍左右……
(三)深入研究圆的周长与直径之间的倍数关系
1.明确实验要求
实验材料:多种实物圆,细绳,直尺,记号笔,计算器……
实验方法:测量圆的周长和直径,并用计算器算出周长除以直径所得的商。
实验步骤:
(1)小组讨论打算用什么方法测量圆的周长?
(2)小组分工:2人合作测量,1人计算,1人记录。
2.汇报实验结果
3.引导发现规律
谈话:仔细观察这一列数据,有什么特点?
明确:周长除以直径所得的商大约是3倍左右(3倍多一些)
追问:正方形的周长除以边长所得的结果总是4,为什么圆的周长除以直径所得的结果却不完全一样呢?
(回应:为什么测出的结果没有3.14或3.1415926呢?)
引导学生认识:测量总是存在一定误差的,用测量得到的数据进行计算,结果得到的只是一个大概的倍数……
4.介绍圆周率的探索历程
课件展示。
(1)介绍《周髀算经》中的“周三径一”,并理解“周三径一”。
(2)介绍刘徽的割圆术。了解把圆切割成正十二边形、正二十四边形,分别算出周长与直径的比值。
(3)介绍祖冲之的贡献。圆的周长与直径的倍数在3.1415926—3.1415927之间,这是世界上最早的七位小数的值。比国外科学家早1000多年。
(4)近代圆周率的研究结果。
5.揭示圆周率的概念
师:人们在研究中发现,任何一个圆的周长除以直径的商都是一个无限不循环小数,但同时也是一个固定不变的数。这个倍数我们把它叫做圆周率,用字母π来表示。
师:为了方便,一般保留2位小数,取它的近似值3.14。
6.归纳圆的周长计算公式。
谈话:知道了周长除以直径等于圆周率,你能推导出圆周长的计算公式吗?
组织学生进行交流。
得出:圆的周长就等于直径乘圆周率
用字母表示:c表示周长,d表示直径,那么c=πd
注:π是一个固定的数,写的时候我们通常把数字写在字母的前面。乘号省略。
设计意图:
1、不同直径车轮的滚动轨迹能清晰地让学生感知直径越大,周长越大;
2、数据计测算之前先进行倍数范围的推想,有利于学生对文本的'学习产生深层次的反思与感悟;
3、直面孩子的一知半解,通过实践操作回应结果的存在性;
4、打破常规思维,认为只要周长除以直径就会得到3.14,事实上用测量得到的数据进行计算是永远得不到的,在此基础上,引入割圆术的科学性,渗透极限思想,深刻理解圆周率,感受数学家的伟大贡献。
四、巩固练习,内化新知
1.算一算:d=4厘米,求圆的周长。
学生独立完成,注意正确运用圆周长的公式。
2.选一选:r=5厘米,那么c=( )
a、3.14×5 b、2×3.14×5 c、3.14×2
追问:为什么还要乘2。
理解:同一个圆里,直径是半径的2倍,因此得出圆周长的另一个计算公式:c=2πr
3.判断:
(1)两个圆的周长相等,那他们的直径也相等。( )
(2)圆的周长是半径的π倍。 ( )
(3)大圆的圆周率大,小圆的圆周率小( )
提出要求:题目如果是错误的,错在哪里?可以怎样改?
4.解决问题:摩天轮的辐条(半径)的长度是10米,请你计算出它的周长。
学生独立练习,订正时教师指名说说是怎样计算的。
5.挑战题
长方形的长是30厘米,宽是20厘米。在长方形上剪下了一个最大的圆,你能算出这个圆的周长吗?
学生独立解题后同桌说说是怎么解答的。教师指导学生交流。
设计意图:
能利用计算公式进行基本运用,首尾呼应解决实际问题,体现数学的应用价值。
五、全课总结,体验收获
同学们,通过今天这节课的学习,有哪些收获?
板书设计:
圆的周长
圆的周长÷直径=圆周率
π≈3.14
圆的周长=直径×圆周率
c=πd或c=2πr
蛋的数学教案篇4
教学目标:
1.使学生初步认识轴对称图形,知道轴对称图形的含义,会判断轴对称图形,能找出对称轴。
2.通过自我实践、小组合作培养学生操作能力、分析推理能力和语言表达能力。
3.通过观察、讨论、创作,使学生充分感知数学美,激发学生爱数学的情感。
教学过程:
一、游戏导入,激发兴趣。
用学生喜欢的事物、人物创设课堂情景,很容易激发学生的兴趣,激活学生思维,积极探索新知。在导入新课时,利用孩子们十分喜爱的漫画人物——三毛,创设情景:黑板上画一个缺眼睛,少耳朵的三毛,请学生画出来。孩子们都踊跃地上黑板添眼睛,画耳朵,可其他同学总觉的不满意,其中一位同学获得大多数人的赞同,于是邀请她介绍经验。生:耳朵和眼睛都要一样大小,都要互相对称。学生从画三毛头像中意识到“对称”二字,为学习新课作铺垫。
二、联系生活,引导探究。
电脑演示:飞机、机器猫、蝴蝶、京剧脸谱、建筑物等轴对称图形。学生哗然,十分欣赏,气氛十分活跃,纷纷谈各自感受。
生a:这些图片我都很喜欢,但我比较喜欢机器猫、蝴蝶的图片,太漂亮了。
生b:我喜欢蝴蝶,颜色鲜艳,而且左右对称,看了很舒服。
生c:有一部分的图片,如蝴蝶、京剧脸谱都是左右对称的。
生d:很多图形都是轴对称图形,很美。
师:的确是的,这些图形都是轴对称图形,很漂亮,你想自己制作一张简单的轴对称图形吗?试一试。同桌两人合作画画,有的学生直接在纸上画;有的学生先画一半,再画另一半;有的学生把纸对折再画;有的学生用剪刀剪……方法各异。制作完毕,把部分学生的作品展示,并介绍制作的方法和过程。并让学生谈谈这些作品共同的特点。
生e:两边都对称。
生f:这些作品都可以沿着一条直线对折,两侧的图形能完全重合。
师:那老师也来试一试,把纸对折,用手随便撕了一个图形,问学生这个作品是否有那样的特点。
生齐答:有。
师:具有这种特点的图形,我们叫它轴对称图形,你知道中间这条直线是什么吗?
生:折痕所在的这条直线叫做对称轴。
师:让我们带着学到的新知道再来欣赏一下刚才的图形,找找它们的对称轴。
学生再次欣赏,有了更深的理解,对轴对称图形的美有了更深的体会。师:生活中还有这样的图形吗?用你们的眼睛去发现、去寻找。
生a:蝴蝶、飞机都是轴对称图形。
生b:京剧脸谱也是轴对称图形。
生c:窗户、桌子、椅子、汽车……都是。老师的衣服,还有我的脸也是。
全班同学哄堂大笑,老师笑着问:“那你脸的对称轴在哪里呢?”学生很仔细的从额头一直画到下巴,样子十分可爱。学生从生活中找到了许许多多的轴对称图形。深刻地体会生活中充满着有趣的数学知识,也深深的体会到数学原来是这么美的。学生也从已学图形中找到了轴对称图形,老师趁热打铁组织讨论。哪些是轴对称图形,有几条对称轴?学生分组研究,师生交流。在离下课大约还有十分钟左右,鼓励学生自己去创作轴对称图形,学生有画画,有剪窗花,剪字。。。等等,并积极的把作品展示给同学看,足见他们这堂课是多么的有成就感啊。
教学反思:
这堂课生动活泼,气氛浓烈。同学们学得轻松,愉快,在教师引导自行探索,在探索中学到知识,掌握本领,并紧密联系生活实际。通过实践,我有以下几点体会。
1、投其所好,导出兴趣。
兴趣是最好的老师,用学生喜闻乐见的事物,作为课堂的开场白,足以吸引教室里所有的眼球,激发学生学习兴趣。这节课以“帮三毛画耳朵眼睛”的'开场白,学生以绝对轻松的心态开始学习,有利于学生思维的正常发挥。并且在看似游戏的活动中发现数学,充分煽动学生学习的激情,为新授作最佳铺垫。
2、欣赏生活,欣赏数学。
教学中学生认识了轴对称图形后,去生活中寻找轴对称图形,最终找到了许许多多,足以体会到数学与生活息息相关。当学生看着机器猫、蝴蝶、飞机啧啧赞赏时,实际上学生也在赞赏数学。原来数学并不是枯燥的数字和公式,而是很美的,也可以用一颗欣赏美的心去学习。
3、小组合作,自行探索。
在当今社会中,面对许多机遇和挑战,要把握机遇,迎接挑战,除了自己个体的竞争意识,还需要团结协作的群体精神。因此,在教学中组织学生小组讨论交流,自行探索,自行发现知识,归纳知识,掌握知识。学生能在这种探索中获得成功的满足感,并在与人合作的过程中,培养合作意识,提高人际交往能力。
我们通过数学教学,提供给学生更宽阔,更精彩的生活舞台,更丰富多样的生活形式,在教学中,充分相信孩子,让他们的个性得到张扬,让他们的人格得到健全,成为有学识,有能力,有修养的高尚的人。
蛋的数学教案篇5
一、活动目标:
1、学习不受物体大小、排列方式、颜色的影响,比较物体的多少。
2、培养良好的操作习惯。
3、培养良好的操作习惯。
二、活动准备:
课件、图片、习作本
三、活动过程:
1、复习故事《海底探险》,发展幼儿的思维和语言表达能力。
教师:小朋友,上堂课麦克老师给我们讲一个《海底探险》事,还记得吗?故事里有谁?它们被什么东西吸进去了,珍宝宝要让他们回答几个问题,最后他们答对了吗?今天珍珠宝也要请我们小朋友来答题,答对了还有奖励呢!
2、出示图片,引导幼儿比较物体的多少。
教师引导,用观察点数的'方法来比较物体的多少。
教师小结:物体数量的多少和物体的大小,排列颜色没有关系。
3、引导幼儿看课件,师幼一起讲解习作题。
(1)教师:珍珠宝宝还有一些小游戏邀请我们小朋友一起参加呢,你们愿意?
(2)请个别幼儿上来操作,答对了奖励一个五角星。
4、幼儿自己完成习作本。
(1)教师:下面请小朋友自己动手来做,你们会吗?
(2)幼儿自己操作,教师指导。
5、集体验证作业
6、游戏“马兰花”
蛋的数学教案优秀5篇相关文章:
★ 山中教案优秀5篇