通过教案,教师能够更好地引导学生进行项目式学习,培养他们的实践能力,通过与学生互动,教师可以根据教案灵活调整教学进度与内容,下面是吾爱文书网小编为您分享的勾股定理的教案7篇,感谢您的参阅。
勾股定理的教案篇1
掌握勾股定理,能用勾股定理解决某些简单的实际问题。
教学难点:熟练勾股定理,并利用它们的特征解决问题。
(一)合作交流: 1、如图①在rt△abc中,∠c=90o,由勾股定理,
得c2=_____________, c=__________
2、在rt△abc中,∠c=90o
① 若a=1,b=2,则c2=_________=_________=_____∴c=_________
② 若a=1,c=2,则b2=___________=________=______∴b=_________
③ 若c=10,b=6, 则a2=___________=________=______∴a=_________
(二)综合应用:
例1:(1)在长方形abcd中ab、bc、ac大小关系?
(2)一个门框的尺寸如图1所示。
①若有一块长3米,宽0.8米的薄木板,问怎样从门框通过?
②若薄木板长3米,宽2.2米呢?为什么?
解:(1)___________________
( 2)答: ①:__________
②:_________
在rt△abc中, 由勾股定理,得ac2=ab2+bc2=________=___
因为ac______木板的宽,所以木板_________从门框内通过。
(三)巩固提高
1、已知要从电杆离地面5米处向地面拉一条长7米的电缆,
求地面电缆固定点a到电线杆底部b的距离。
解:由题意得,在rt△abc中: =5米, =7米
根据勾股定理,得ab2=
∴ab=
2、如图,一个圆锥的高ao=2.4cm,底面半径ob=0.7cm,
求ab的长。
解:
3、如图,为了求出位于湖两岸的两点a、 b之间的距离,一个观测者在点c设桩,使三角形abc恰好为直角三角形.通过测量,得到ac长160米,bc长128米.问从点a穿过湖到点b有多远?
解:由题意得:在 中,
根据勾股定理得:
∴ab=
∴从点a穿过湖到点b有
4、求下列阴影部分的面积:
(1) 阴影部分是正方形; (2) 阴影部分是长方形; (3) 阴影部分是半圆.
正方形的边长=
正方形的面积=________ ______
(2)
长方形的长=
长方形的面积为________________
(3)
圆的半径=
半圆的面积为__________________
5、一旗杆离地面6米处折断,旗杆顶部落在离旗杆8米处,旗杆折断之前有多少米?
(提示:折断前的长度应该是ab+bc的长)
解:
6、如图所示,求矩形零件上两孔中心a和b的距离。
(精确到0.1mm)(分析:求两孔中心a和b的距离即
求线段____的长度)
解: 如图:ac=
bc=
∵rt△abc中,∠c=90o,
由勾股定理,得
∴ab2=_________=
∴ab=
答:
7、在△abc中,∠c=900,ab=10。
(1)若∠b=300,求bc、ac。
(2)若∠a=450,求bc、ac。
8、如图,一个3米长的梯子ab,斜着靠在竖直的墙ao上,这时ao的距离为2.5米。
①求梯子的底端b距墙角o多少米?
②如果梯子的顶端a沿墙角下滑0.5米至c,请同学们:
猜一猜,底端也将滑动0.5米吗?
算一算,底端滑动的'距离近似值是多少? (结果保留两位小数)
9、一艘轮船以16海里/时的速度离开港口a向东南方向航行。另一艘轮船在同时同地以12海里/时的速度向西南方向航行,它们离开港口一个半小时后相距多远?(自已画图,标字母,求解)。
(四)课堂小结
这节课我们学习了什么内容?有什么收获?你还有什么疑问吗?
(五)作业
(六)课堂反思
勾股定理的教案篇2
教学目标
1、知识与技能目标
学会观察图形,勇于探索图形间的关系,培养学生的空间观念.
2、过程与方法
(1)经历一般规律的探索过程,发展学生的抽象思维能力.
(2)在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.
3、情感态度与价值观
(1)通过有趣的问题提高学习数学的兴趣.
(2)在解决实际问题的过程中,体验数学学习的实用性.
教学重点:
探索、发现事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题.
教学难点:
利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题.
教学准备:
多媒体
教学过程:
第一环节:创设情境,引入新课(3分钟,学生观察、猜想)
情景:
如图:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在b处,恰好一只在a处的蚂蚁捕捉到这一信息,于是它想从a处爬向b处,你们想一想,蚂蚁怎么走最近?
第二环节:合作探究(15分钟,学生分组合作探究)
学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线。让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法:建立数学模型,构图,计算.
学生汇总了四种方案:
(1) (2) (3)(4)
学生很容易算出:情形(1)中a→b的路线长为:aa’+d,情形(2)中a→b的路线长为:aa’+πd/2所以情形(1)的路线比情形(2)要短.
学生在情形(3)和(4)的比较中出现困难,但还是有学生提出用剪刀沿母线aa’剪开圆柱得到矩形,前三种情形a→b是折线,而情形(4)是线段,故根据两点之间线段最短可判断(4)最短.
如图:
(1)中a→b的路线长为:aa’+d;
(2)中a→b的路线长为:aa’+a’b>ab;
(3)中a→b的路线长为:ao+ob>ab;
(4)中a→b的路线长为:ab.
得出结论:利用展开图中两点之间,线段最短解决问题.在这个环节中,可让学生沿母线剪开圆柱体,具体观察.接下来后提问:怎样计算ab?
在rt△aa′b中,利用勾股定理可得,若已知圆柱体高为12c,底面半径为3c,π取3,则.
第三环节:做一做(7分钟,学生合作探究)
教材23页
李叔叔想要检测雕塑底座正面的ad边和bc边是否分别垂直于底边ab,但他随身只带了卷尺,
(1)你能替他想办法完成任务吗?
(2)李叔叔量得ad长是30厘米,ab长是40厘米,bd长是50厘米,ad边垂直于ab边吗?为什么?
(3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验ad边是否垂直于ab边吗?bc边与ab边呢?
第四环节:巩固练习(10分钟,学生独立完成)
1.甲、乙两位探险者到沙漠进行探险,某日早晨8:00甲先出发,他以6/h的速度向正东行走,1小时后乙出发,他以5/h的速度向正北行走.上午10:00,甲、乙两人相距多远?
2.如图,台阶a处的蚂蚁要爬到b处搬运食物,它怎么走最近?并求出最近距离.
3.有一个高为1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分为0.5米,问这根铁棒有多长?
第五环节 课堂小结(3分钟,师生问答)
内容:
1、如何利用勾股定理及逆定理解决最短路程问题?
第六 环节:布置作业(2分钟,学生分别记录)
内容:
作业:1.课本习题1.5第1,2,3题.
要求:a组(学优生):1、2、3
b组(中等生):1、2
c组(后三分之一生):1
板书设计:
教学反思:
勾股定理的教案篇3
学习目标
1、通过拼图,用面积的方法说明勾股定理的正确性.
2.探索勾股定理的过程,发展合情推理的能力,体会数型结合的思想。
重点难点
或学习建议学习重点:用面积的方法说明勾股定理的正确.
学习难点:勾股定理的应用.
学习过程教师
二次备课栏
自学准备与知识导学:
这是1955年希腊为纪念一位数学家曾经发行的邮票。
邮票上的图案是根据一个著名的数学定理设计的。
学习交流与问题研讨:
1、探索
问题:分别以图中的直角三角形三边为边向三角形外
作正方形,小方格的面积看做1,求这三个正方形的'面积?
s正方形bced=s正方形acfg=s正方形abhi=
发现:
2、实验
在下面的方格纸上,任意画几个顶点都在格点上的三角形;并分别以这个三角形的各边为一边向三角形外做正方形并计算出正方形的面积。
请完成下表:
s正方形bceds正方形acfgs正方形abhis正方形bced、s正方形acfg、s正方形abhi的关系
112
145
41620
91625
发现:
如何用直角三角形的三边长来表示这个结论?
这个结论就是我们今天要学习的勾股定理:
如图:我国古代把直角三角形中,较短的直角边叫做“勾”,较长的直角边叫做“股”,斜边叫做“弦”,所以勾股定理可表示为:弦股还可以表示为:或勾
练习检测与拓展延伸:
练习1、求下列直角三角形中未知边的长
练习2、下列各图中所示的线段的长度或正方形的面积为多少。
(注:下列各图中的三角形均为直角三角形)
例1、如图,在四边形中,∠,∠,,求.
检测:
1、在rt△abc中,∠c=90°(1)若a=5,b=12,则c=________;
(2)b=8,c=17,则s△abc=________。
2、在rt△abc中,∠c=90,周长为60,斜边与一条直角边之比为13∶5,则这个三角形三边长分别是()
a、5、4、3、;b、13、12、5;c、10、8、6;d、26、24、10
3、若等腰三角形中相等的两边长为10cm,第三边长为16cm,那么第三边上的高为()
a.12cmb.10cmc.8cmd.6cm
4、要登上8m高的建筑物,为了安全需要,需使梯子底端离建筑物6m,至少需要多长的梯子?(画出示意图)
5、飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4千米处,过了20秒,飞机距离这个男孩5千米,飞机每小时飞行多少千米?
课后反思或经验总结:
1、什么叫勾股定理;
2、什么样的三角形的三边满足勾股定理;
3、用勾股定理解决一些实际问题。
勾股定理的教案篇4
教学目标:
1、知识目标:
(1)掌握勾股定理;
(2)学会利用勾股定理进行计算、证明与作图;
(3)了解有关勾股定理的历史.
2、能力目标:
(1)在定理的证明中培养学生的拼图能力;
(2)通过问题的解决,提高学生的运算能力
3、情感目标:
(1)通过自主学习的发展体验获取数学知识的感受;
(2)通过有关勾股定理的历史讲解,对学生进行德育教育.
教学重点:勾股定理及其应用
教学难点:通过有关勾股定理的历史讲解,对学生进行德育教育
教学用具:直尺,微机
教学方法:以学生为主体的讨论探索法
教学过程:
1、新课背景知识复习
(1)三角形的三边关系
(2)问题:(投影显示)
直角三角形的三边关系,除了满足一般关系外,还有另外的特殊关系吗?
2、定理的获得
让学生用文字语言将上述问题表述出来.
勾股定理:直角三角形两直角边 的平方和等于斜边 的平方
强调说明:
(1)勾――最短的边、股――较长的直角边、弦――斜边
(2)学生根据上述学习,提出自己的问题(待定)
学习完一个重要知识点,给学生留有一定的时间和机会,提出问题,然后大家共同分析讨论.
3、定理的证明方法
方法一:将四个全等的直角三角形拼成如图1所示的正方形.
方法二:将四个全等的直角三角形拼成如图2所示的正方形,
方法三:总统法.如图所示将两个直角三角形拼成直角梯形
以上证明方法都由学生先分组讨论获得,教师只做指导.最后总结说明
4、定理与逆定理的应用
例1 已知:如图,在△abc中,acb= ,ab=5cm,bc=3cm,cdab于d,求cd的长.
解:∵△abc是直角三角形,ab=5,bc=3,由勾股定理有
c
又
cd的长是2.4cm
例2 如图,△abc中,ab=ac,bac= ,d是bc上任一点,
求证:
证法一:过点a作aebc于e
则在rt△ade中,
又∵ab=ac,bac=
ae=be=ce
即
证法二:过点d作deab于e, dfac于f
则de∥ac,df∥ab
又∵ab=ac,bac=
eb=ed,fd=fc=ae
在rt△ebd和rt△fdc中
在rt△aed中,
例3 设
求证:
证明:构造一个边长 的矩形abcd,如图
在rt△abe中
在rt△bcf中
在rt△def中
在△bef中,be+efbf
即
例4 国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某村六组有四个村庄a、b、c、d正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分.请你帮助计算一下,哪种架设方案最省电线.
解:不妨设正方形的边长为1,则图1、图2中的总线路长分别为
ad+ab+bc=3,ab+bc+cd=3
图3中,在rt△dgf中
同理
图3中的路线长为
图4中,延长ef交bc于h,则fhbc,bh=ch
由fbh= 及勾股定理得:
ea=ed=fb=fc=
ef=1-2fh=1-
此图中总线路的长为4ea+ef=
∵32.8282.732
图4的连接线路最短,即图4的'架设方案最省电线.
5、课堂小结:
(1)勾股定理的内容
(2)勾股定理的作用
已知直角三角形的两边求第三边
已知直角三角形的一边,求另两边的关系
6、布置作业:
a、书面作业p130#1、2、3
b、上交作业p132#1、3
板书设计:
探究活动
台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,如图,据气象观测,距沿海某城市a的正南方向220千米b处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东
方向往c移动,且台风中心风力不变,若城市所受风力达到或走过四级,则称为受台风影响
(1)该城市是否会受到这交台风的影响?请说明理由
(2)若会受到台风影响,那么台风影响该城市持续时间有多少?
(3)该城市受到台风影响的最大风力为几级?
解:(1)由点a作adbc于d,
则ad就为城市a距台风中心的最短距离
在rt△abd中,b= ,ab=220
由题意知,当a点距台风(12-4)20=160(千米)时,将会受到台风影响.
故该城市会受到这次台风的影响.
(2)由题意知,当a点距台风中心不超过60千米时,
将会受到台风的影响,则ae=af=160.当台风中心从e到f处时,
该城市都会受到这次台风的影响
由勾股定理得
ef=2de=
因为这次台风中心以15千米/时的速度移动
所以这次台风影响该城市的持续时间为 小时
(3)当台风中心位于d处时,a城市所受这次台风的风力最大,其最大风力为 级.
勾股定理的教案篇5
[教学分析]
勾股定理是揭示三角形三条边数量关系的一条非常重要的性质,也是几何中最重要的定理之一。它是解直角三角形的主要依据之一,同时在实际生活中具有广泛的用途,“数学源于生活,又用于生活”正是这章书所体现的主要思想。教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际操作,使学生获得较为直观的印象;通过联系比较、探索、归纳,帮助学生理解勾股定理,以利于进行正确的应用。
本节教科书从毕达哥拉斯观察地面发现勾股定理的传说谈起,让学生通过观察计算一些以直角三角形两条直角边为边长的小正方形的面积与以斜边为边长的正方形的面积的关系,发现两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积,从而发现勾股定理,这时教科书以命题的形式呈现了勾股定理。关于勾股定理的证明方法有很多,教科书正文中介绍了我国古人赵爽的证法。之后,通过三个探究栏目,研究了勾股定理在解决实际问题和解决数学问题中的应用,使学生对勾股定理的作用有一定的认识。
[教学目标]
一、 知识与技能
1、探索直角三角形三边关系,掌握勾股定理,发展几何思维。
2、应用勾股定理解决简单的实际问题
3学会简单的合情推理与数学说理
二、 过程与方法
引入两段中西关于勾股定理的史料,激发同学们的兴趣,引发同学们的思考。通过动手操作探索与发现直角三角形三边关系,经历小组协作与讨论,进一步发展合作交流能力和数学表达能力,并感受勾股定理的应用知识。
三、 情感与态度目标
通过对勾股定理历史的了解,感受数学文化,激发学习兴趣;在探究活动中,学生亲自动手对勾股定理进行探索与验证,培养学生的合作交流意识和探索精神,以及自主学习的能力。
四、 重点与难点
1、探索和证明勾股定理
2熟练运用勾股定理
[教学过程]
一、创设情景,揭示课题
1、教师展示图片并介绍第一情景
以中国最早的一部数学著作——《周髀算经》的开头为引,介绍周公向商高请教数学知识时的对话,为勾股定理的出现埋下伏笔。
周公问:“窃闻乎大夫善数也,请问古者包牺立周天历度.夫天不可阶而升,地不可得尺寸而度,请问数安从出?”商高答:“数之法出于圆方,圆出于方,方出于矩,矩出九九八十一,故折矩以为勾广三,股修四,径隅五。既方其外,半之一矩,环而共盘.得成三、四、五,两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所由生也。”
2、教师展示图片并介绍第二情景
毕达哥拉斯是古希腊著名的数学家。相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的某种特性。
二、师生协作,探究问题
1、现在请你也动手数一下格子,你能有什么发现吗?
2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有这样的特点呢?
3、你能得到什么结论吗?
三、得出命题
勾股定理:如果直角三角形的两直角边长分别为a、b,斜边长为c,那么,即直角三角形两直角边的平方和等于斜边的平方。解释: 由于我国古代把直角三角形中较短的直角边称为勾,较长的边称为股,斜边称为弦,所以,把它叫做勾股定理。
四、勾股定理的证明
赵爽弦图的'证法(图2)
第一种方法:边长为 的正方形可以看作是由4个直角边分别为 、 ,斜边为 的直角三角形围在外面形成的。因为边长为 的正方形面积加上4个直角三角形的面积等于外围正方形的面积,所以可以列出等式 ,化简得 。
第二种方法:边长为 的正方形可以看作是由4个直角边分别为 、 ,斜边为 的
角三角形拼接形成的(虚线表示),不过中间缺出一个边长为 的正方形“小洞”。
因为边长为 的正方形面积等于4个直角三角形的面积加上正方形“小洞”的面积,所以可以列出等式 ,化简得 。
这种证明方法很简明,很直观,它表现了我国古代数学家赵爽高超的证题思想和对数学的钻研精神,是我们中华民族的骄傲。
五、应用举例,拓展训练,巩固反馈。
勾股定理的灵活运用勾股定理在实际的生产生活当中有着广泛的应用。勾股定理的发现和使用解决了许多生活中的问题,今天我们就来运用勾股定理解决一些问题,你可以吗?试一试。
例题:小明妈妈买了一部29英寸(74厘米)的电视机,小明量了电视机的屏幕后,发现屏幕只有58厘长和46厘米宽,他觉得一定是售货员搞错了,你同意他的想法吗?你能解释这是为什么吗?
六、归纳总结1、内容总结:探索直角三角形两直角边的平方和等于斜边的平方,利于勾股定理,解决实际问题
2、方法归纳:数方格看图找关系,利用面积不变的方法。用直角三角形三边表示正方形的面积观察归纳注意画一个直角三角形表示正方形面积,再次验证自己的发现。
七、讨论交流
让学生发表自己的意见,提出他们模糊不清的概念,给他们一个梳理知识的机会,通过提示性的引导,让学生对勾股定理的概念豁然开朗,为后面勾股定理的应用打下基础。
我们班的同学很聪明。大家很快就通过数格子发现了勾股定理的规律。还有什么地方不懂的吗?跟大家一起来交流一下。请同学们课后在反思天地中都发表一下自己的学习心得。
勾股定理的教案篇6
一、教学目标
通过对几种常见的勾股定理验证方法,进行分析和欣赏。理解数
学知识之间的内在联系,体会数形结合的思想方法,进一步感悟勾股定理的文化价值。
通过拼图活动,尝试验证勾股定理,培养学生的动手实践和创新能力。
(3)让学生经历自主探究、合作交流、观察比较、计算推理、动手操作等过程,获得一些研究问题的方法,取得成功和克服困难的经验,培养学生良好的思维品质,增进他们数学学习的信心。
二、教学的重、难点
重点:探索和验证勾股定理的过程
难点:
(1)“数形结合”思想方法的理解和应用
通过拼图,探求验证勾股定理的新方法
三、学情分析
八年级的学生已具备一定的生活经验,对新事物容易产生兴趣,动手实践能力也比较强,在班级上已初步形成合作交流,勇于探索与实践的良好班风,估计本节课的学习中学生能够在教师的引导和点拨下自主探索归纳勾股定理。
四、教学程序分析
(一)导入新课
介绍勾股世界
两千多年前,古希腊有个毕达哥拉斯学派,他们首先发现了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯定理。为了纪念毕达哥拉斯学派,1955年希腊曾经发行了一枚纪念邮票。
我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”,它被记载于我国古代著名的数学著作《周髀算经》中。
(二)讲解新课
1、探索活动一:
观察下图,并回答问题:
(1)观察图1
正方形a中含有
个小方格,即a的面积是
个单位面积;
正方形b中含有
个小方格,即b的面积是
个单位面积;
正方形c中含有
个小方格,即c的面积是
个单位面积。
(2)在图2、图3中,正方形a、b、c中各含有多少个小方格?它们的面积各是多少?你是如何得到上述结果的?与同伴交流。
(3)请将上述结果填入下表,你能发现正方形a,b,c,的面积关系吗?
a的面积
(单位面积)
b的'面积
(单位面积)
c的面积
(单位面积)
图1
9
9
18
图2
4
4
8
2、探索活动二:
(1)观察图3,图4
并填写下表:
a的面积
(单位面积)
b的面积
(单位面积)
c的面积
(单位面积)
图3
16
9
25
图4
4
9
13
你是怎样得到上面结果的?与同伴交流。
(2)三个正方形a,b,c的面积之间的关系?
3、议一议(合作交流,验证发现)
(1)你能发现直角三角形三边长度之间存在什么关系吗?
勾股定理:如果直角三角形两直角边分别为a、b,斜边为c
,那么a2+b2=c2。
即直角三角形两直角边的平方和等于斜边的平方。
(2)我们怎么证明这个定理呢?
教师指导第一种证明方法,学生合作探究第二种证明方法。
可得:
想一想:大正方形的面积该怎样表示?
想一想:这四个直角三角形还能怎样拼?
可得:
4、例题分析
如图,一根电线杆在离地面5米处断裂,电线杆顶部落在离电线杆底部12米处,电线杆折断之前有多高?
解:∵,
∴在中,
,根据勾股定理,
∴电线杆折断之前的高度=bc+ab=5米+13米=18米
(三)课堂小结
勾股定理从边的角度刻画了直角三角形的又一个特征.人类对勾股定理的研究已有近3000年的历史,在西方,勾股定理又被称为“毕达哥拉斯定理”、“百牛定理”、“驴桥定理”等等
.
(四)布置作业
收集有关勾股定理的证明方法,下节课展示、交流.
五、板书设计
勾股定理的探索与证明
做一做
勾股定理
议一议
(直角三角形的直角边分别为a、b,斜边为c,则a2+b2=c2)
六、课后反思
?新课程标准》指出:“数学教学是数学活动的教学。”数学实验在现阶段的数学教学中还没有普及与推广,实际上,通过学生的合作探究、动手实践、归纳证明等活动,让数学课堂生动起来,也让学生感觉数学是可以动手做实验的,提高了学生学习数学的兴趣与激情。本节课,我充分利用学生动手能力强、表现欲高的特点,在充裕的时间里,放手让学生动手操作,自己归纳与分析。最后得出结论。我认为本节课是成功的,一方面体现了学生的主体地位,另一方面让实验走进了数学课堂,真正体现了实验的巨大作用。
勾股定理的教案篇7
课题:
勾股定理
课型:
新授课
课时安排:
1课时
教学目的:
一、知识与技能目标理解和掌握勾股定理的内容,能够灵活运用勾股定理进行计算,并解决一些简单的实际问题。
二、过程与方法目标通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。
三、情感、态度与价值观目标了解中国古代的数学成就,激发学生爱国热情;学生通过自己的努力探索出结论获得成就感,培养探索热情和钻研精神;同时体验数学的美感,从而了解数学,喜欢几何。
教学重点:
引导学生经历探索及验证勾股定理的过程,并能运用勾股定理解决一些简单的实际问题
教学难点:
用面积法方法证明勾股定理
课前准备:
多媒体ppt,相关图片
教学过程:
(一)情境导入
1、多媒体课件放映图片欣赏:勾股定理数形图,1955年希腊发行的一枚纪念邮票,美丽的勾股树,20xx年国际数学大会会标等。通过图形欣赏,感受数学之美,感受勾股定理的文化价值。
2、多媒体课件演示flash小动画片:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?已知一直角三角形的两边,如何求第三边?学习了今天的这节课后,同学们就会有办法解决了。
(二)学习新课问题一是等腰直角三角形的情形(通过多媒体给出图形),判断外围三个正方形面积有何关系?相传2500年前,毕达哥拉斯(古希腊著名的哲学家、数学家、天文学家)有一次在朋友家做客时,发现朋友家里用砖铺成的地面中反映了直角三角形三边的某种数量关系。你能观察图中的地面,看看能发现什么?对于等腰直角三角形有这样的性质:两直边的平方和等于斜边的'平方那么对于一般的直角三角形是否也有这样的性质呢?请大家画一个任意的直角三角形,量一量,算一算。问题二是一般直角三角形的情形,判断这时外围三个正方形的面积是否也存在这种关系?通过这个观察和验算这个直角三角形外围的三个正方形面积之间的关系,同学们发现了什么规律吗?通过前面对两个问题的验证,可以得到勾股定理:如果直角三角形的两直角边长分别为a、b,斜边为c,那么a2+b2=c2。
(三)巩固练习1、如果一个直角三角形的两条边长分别是6厘米和8厘米,那么这个三角形的周长是多少厘米?2、解决课程开始时提出的情境问题。
(四)小结
1、背景知识介绍①《周髀算径》中,西周的商高在公元一千多年前发现了“勾三股四弦五”这一规律;②康熙数学专著《勾股图解》有五种求解直角三角形的方法,积求勾股法是他的独创。
2、通过这节课的学习,你会写方程了吗?你有什么收获和体会?
(五)作业练习18.1中的1、2、3题。板书设计:勾股定理:如果直角三角形的两直角边长分别为a、b,斜边为c,那么a2+b2=c2。
勾股定理的教案7篇相关文章:
★ 升的认识教案7篇
★ 画书包的教案7篇
★ zcs的教案7篇